Empirical Analysis of Rotation Invariance in Moment Coefficients
نویسندگان
چکیده
منابع مشابه
Empirical Analysis of Invariance of Transform Coefficients under Rotation
Rotationally invariant transforms, namely, angular radial transform and polar harmonic transforms such as polar cosine transform, polar sine transform and polar complex exponential transforms, are used to characterize image features for a number of applications like logo recognition, face recognition etc. But the computation of features using these transforms is an expensive process due to thei...
متن کاملEmpirical Analysis of Scale Invariance in Transform Coefficients
One of the necessary and useful image features in recognizing the images successfully is scale invariance. In this paper, we analyzed the effect of scaling on angular radial transform and polar harmonic transforms by computing deviation in each transform coefficient of scaled image and the original image at the same coefficient. These transforms help in extracting the features of an image which...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولRotation Invariance
This chapter discusses the issue of rotational invariance of a texture analysis system: i.e. one desires that the outcome of the analysis is not aaected by the orientation of the input image. We argue that the orthogonal DWT (section 3.4) is very impractical for such an analysis due to its separable nature in 2 dimensions. We therefore employ the non-separable wavelet frames (section 3.3). We d...
متن کاملRotation Invariance Neural Network
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/21143-4198